Digital Marketing » Articles » Articles By » Darwinism in Search and AI: How Algorithms Judge and Choose

Darwinism in Search and AI: How Algorithms Judge and Choose

Part 3 of the “How AI Finds You” trilogy. This article explains how algorithms select from annotated content. Previously: DSCRI: The Five Hurdles Between Publication and Indexing (how content enters) and The Indexing Annotation Hierarchy: How Bots Tag Without Judging (how content gets tagged).

By Jason Barnard, CEO of Kalicube®

Where Competition Actually Happens

Your content has survived DSCRI - the friction-free path through Discover, Select, Crawl, Render, and Index. It has been classified by the Indexing Annotation Hierarchy - 24 dimensions of neutral, factual tagging. It now sits in the index as annotated chunks, waiting.

Waiting for what?

Waiting to be selected.

This is where competition begins. Not during indexing - the bot doesn’t judge, doesn’t filter, doesn’t eliminate. It classifies. But now, when a query arrives, when a Knowledge Graph needs updating, when an LLM needs training data, when an AI assistant needs to generate an answer - now the algorithms start selecting.

Welcome to the Algorithm Marketplace.

Darwinism in Search: The Selection Mechanism

In 2019, at the SMS Sydney conference, I asked Gary Illyes from Google a question that would reshape my understanding of search: Does the Featured Snippet function on a different algorithm than the 10 blue links?

His answer was revelatory. Google uses separate ranking algorithms for different features, and these features “bid” against each other for placement on the SERP. The feature that demonstrates the most value to the user wins the slot.

I immediately recognized this as Darwinian natural selection applied to search results. I coined the term “Darwinism in Search” and published the framework in Search Engine Journal in April 2020.

The framework received stunning validation when Bing’s Nathan Chalmers revealed that Bing actually has an algorithm named “Darwin” - their actual internal name for the algorithm that decides element placement on the SERP.

This is the principle: survival of the fittest. Not the fittest content in some abstract sense - the fittest for that specific algorithm’s needs at that specific moment.

The Marketplace Model

Think of the annotated index as a vast warehouse of classified content chunks. Each chunk carries its annotation profile - the 24 dimensions of metadata created during indexing.

Now imagine multiple buyers entering this warehouse, each with different shopping lists:

The Web Search Ranking Algorithm needs chunks that match query intent, user location, and freshness requirements.

The Video Search Algorithm needs video content tagged with relevant entities and appropriate expertise level.

The Knowledge Graph Builder needs high-confidence entity-relationship triples from trusted sources.

The LLM Training Pipeline needs diverse, well-structured, uncontroversial content.

The AI Response Generator needs quotable, standalone chunks that directly answer the query.

Each buyer queries the same annotation set. Each applies different filters. Each has different confidence thresholds. The chunks that match get selected. The chunks that don’t match - for that buyer, for that query, at that moment - don’t exist.

This is not judgment. This is selection.

How Selection Queries Work

When an algorithm needs content, it doesn’t browse. It queries. The query is constructed from the annotations created during indexing.

A simplified selection query might look like:

FIND chunks WHERE:

  temporal_scope = ‘current’ OR ‘evergreen’

  AND geographic_scope INCLUDES ‘US’

  AND language = ‘English’

  AND entity_resolution_confidence > 0.8

  AND intent_category = ‘informational’

  AND entities CONTAINS ‘target_entity’

  AND standalone_score > 0.7

Chunks that pass all filters become candidates. Candidates then compete against each other based on additional ranking signals. The fittest survive into the final output.

The Buyers: Who Queries the Annotation Set

Let me walk through each major algorithm type - each “buyer” in the marketplace - and explain what they’re shopping for.

Web Search Ranking Algorithms

What they need: Content that matches query intent and user context.

Primary filters:

Scope tags (temporal, geographic, language) matching query context

Intent category matching query intent

Expertise level matching user signals

Freshness for time-sensitive queries

Reliability profile for YMYL (Your Money or Your Life) topics

Competition dynamic: Candidates compete in pairwise comparisons. The Whole Page Algorithm (what Bing calls “Darwin”) determines which combination of results - blue links, featured snippets, images, videos, news - best serves the user.

Survival means: Appearing on Page 1. Everything else is functionally invisible.

Vertical Search Algorithms (Video, Images, News, Shopping, Local)

What they need: Media-specific content that matches query context.

Primary filters:

Media type tags (video, image, news article, product)

Temporal scope (critical for News - yesterday’s news is dead)

Entity resolution for product/brand queries

Geographic scope for local results

Intent category (shopping vs. research vs. entertainment)

Competition dynamic: Each vertical generates its best candidate. That candidate then competes against other verticals AND blue links for SERP real estate. A video must prove it serves the user better than text results to win a slot.

Survival means: Winning the bid against both same-type competitors AND cross-type competitors.

Knowledge Graph Builders

What they need: Verified facts about entities that can be stored as structured data.

Primary filters:

High-confidence entity-relationship triples (confidence > 0.8 typically)

Resolved entities (successfully linked to existing KG records)

Factual attributes with high verifiability

Third-party provenance for validation (not just first-party claims)

Consensus alignment (matches or extends existing understanding)

Competition dynamic: When multiple sources make claims about the same entity, the Knowledge Graph must reconcile. It selects the most corroborated, most verifiable, most consistently stated facts. Contradictory claims from low-confidence sources are discarded.

Survival means: Your facts become canonical. They appear in Knowledge Panels. They inform AI responses. They become the “truth” about you.

LLM Training Data Selection

What they need: High-quality, diverse content that teaches the model about the world.

Primary filters:

Low controversy level (consensus content preferred)

Diverse claim structures (definitions, processes, comparisons, narratives)

High sufficiency (complete, self-contained explanations)

Quality evidence types (research citations, data, expert opinions)

Appropriate expertise distribution (beginner through specialist)

Competition dynamic: Training pipelines need balance. They can’t over-index on any single source, topic, or perspective. Your content competes for inclusion against the entire corpus. Too similar to existing training data? Excluded as redundant. Too controversial? Excluded as risky. Too specialized without sufficient beginner content? Excluded as unbalanced.

Survival means: The LLM learns from you. Your terminology, your frameworks, your explanations become part of how the model understands the topic.

AI Response Generators (ChatGPT, Perplexity, Google AI Mode, Bing Chat)

What they need: Quotable, trustworthy passages that directly answer the query.

Primary filters:

High standalone score (can be quoted directly without additional context)

Appropriate entity salience (chunk is ABOUT the queried entity)

Matching intent and expertise level

Sufficient + independent for clean extraction

High verifiability (checkable claims preferred)

Competition dynamic: This is the new frontier of Darwinism in Search. AI Mode uses LLM-based pairwise comparison: “Which of these two passages better answers the query?” The AI generates synthetic sub-queries (query fan-out), and your content must be “fit” across multiple query variations. Only 3-7 sources typically get cited in the final answer.

Survival means: Citation. Your words - or a synthesis of them - appear in the AI response. Your brand gets mentioned. You exist in the answer. Everything else is algorithmically extinct.

The Evolution: From SERP Slots to AI Citations

The Darwinism in Search framework I developed in 2019-2020 predicted exactly what happened when AI Mode launched. The principle is identical - only the arena changed.

Traditional Search (2019-2024)AI Assistive Engines (2024+)
SERP features compete for slotsPassages compete for inclusion
Whole Page Algorithm arbitratesSynthesis algorithm arbitrates
Blue links as baselineZero citation as baseline
“Bid” based on user value“Selection” based on confidence
10 result slots available3-7 source citations typical
Click to contentContent synthesized into answer

Algorithmic Darwinism: Survival of the Algorithmically Fittest

I extended the framework in 2025 with what I call “Algorithmic Darwinism” - survival of the algorithmically fittest across all AI platforms simultaneously.

The rules have changed:

Fitness ≠ Budget or Volume. You cannot buy your way into AI citations. You cannot flood your way in. Fitness is measured by clarity, consistency, and corroboration.

Selection pressure is real. AI platforms actively exclude unclear or untrustworthy content. Low-confidence annotations mean low selection probability.

Extinction is real. Brands with weak algorithmic signals are progressively eliminated from AI recommendations. If you’re not cited, you don’t exist in the AI-mediated world.

Adaptation is required. The Kalicube Process (Understandability → Credibility → Deliverability) is the “fitness regimen” for AI survival.

The Multiplicative Effect: Why One Weak Factor Kills You

Here’s the mechanism that makes Darwinism in Search so brutal: scores multiply.

As Brent D. Payne noted during Gary Illyes’ original explanation: “Better to be a straight C student than 3 As and an F.”

If your content scores 0.9 across most factors but 0.1 on entity resolution, your overall bid is destroyed:

0.9 × 0.9 × 0.9 × 0.1 = 0.0729

Meanwhile, a competitor with consistent 0.7 scores wins:

0.7 × 0.7 × 0.7 × 0.7 = 0.2401

This is why the Indexing Annotation Hierarchy matters. Every dimension is a potential failure point. One low-confidence annotation - unclear entity resolution, ambiguous temporal scope, low standalone score - can eliminate content that’s otherwise excellent.

What Gets Selected: The Fitness Criteria

Across all downstream algorithms, certain annotation patterns consistently win:

High entity resolution confidence. Clear, named entities linked to Knowledge Graph records. No ambiguity about WHO or WHAT is being discussed.

Appropriate scope matching. Temporal, geographic, and language tags that match query context. Current content for current queries. Local content for local queries.

High standalone score. Sufficient, independent content that can be quoted or synthesized without additional context.

Verifiable claims. Specific, checkable assertions with dates, names, numbers. Not vague superlatives.

Third-party corroboration. Claims validated by independent sources, not just first-party assertions.

Clear expertise signals. Consistent sophistication level that matches the target audience for the query.

What Gets Excluded: The Extinction Factors

Conversely, certain patterns consistently fail selection:

Ambiguous entity references. “He did it there” instead of “Jason Barnard presented at BrightonSEO.”

Unclear temporal scope. No date markers, no freshness signals, no way to know if content is current.

High dependency. Content that requires surrounding context to understand. Pronouns without antecedents. References without definitions.

Unverifiable claims. “The best,” “world-class,” “unmatched” - subjective assertions that can’t be checked.

First-party only. Claims about yourself with no third-party validation. Self-promotion without corroboration.

Mixed expertise signals. Jargon mixed with oversimplification. No clear audience.

The Complete Picture: The Trilogy

This article completes a trilogy that explains the entire algorithmic content journey:

1. DSCRI: The Friction-Free Path to Indexing

How content gets TO the indexing system. Discover, Select, Crawl, Render, Index - each stage a cost-value calculation. Friction at any stage can prevent indexing entirely.

2. The Indexing Annotation Hierarchy

What happens DURING indexing. 24 dimensions of neutral, factual classification. The bot doesn’t judge, doesn’t filter, doesn’t eliminate. It classifies. Each annotation carries a confidence score - a measurement of classification certainty, not quality judgment.

3. Downstream Selection: The Algorithm Marketplace (this article)

What happens AFTER indexing. Multiple algorithms query the same annotation set with different filters and confidence thresholds. This is where competition happens. This is where Darwinism in Search operates. This is where survival - or extinction - is determined.

The Bottom Line

The indexing bot doesn’t care about you. It doesn’t care about your competitors. It classifies everything neutrally and stores it with annotation metadata.

But the downstream algorithms? They’re selecting. They’re filtering. They’re running Darwinian competition on every query, every Knowledge Graph update, every training batch, every AI response.

Your content’s annotation profile determines whether it’s even a candidate. The quality of those annotations - the confidence scores across all 24 dimensions - determines whether you survive selection.

Old thinking: “How do I rank higher than competitors?”

New thinking: “How do I ensure my content passes every algorithm’s selection filters with high confidence?”

The algorithm marketplace is open. Every algorithm is shopping. The question is: are you fit enough to be selected?

Jason Barnard is the CEO of Kalicube® and the world’s leading authority on Knowledge Graphs, Brand SERPs, and AI Assistive Engine Optimization. He coined the terms Brand SERP (2012), Answer Engine Optimization (2017), Darwinism in Search (2019), and AI Assistive Engine Optimization (2024). The “Algorithm Marketplace” framework was developed in 2025 as the third part of his trilogy on algorithmic content processing.

Quick Reference: Algorithm Selection Criteria

AlgorithmPrimary FiltersSurvival Means
Web SearchIntent, scope, freshness, reliabilityPage 1 visibility
Vertical SearchMedia type, temporal, geo, entitiesSERP feature slot
Knowledge GraphEntity confidence, verifiability, provenanceCanonical facts
LLM TrainingDiversity, sufficiency, low controversyModel learns from you
AI ResponseStandalone score, salience, verifiabilityCitation in answer

┌─────────────────────────────────────────────────────────────────────────────────┐
│                     DARWINISM IN SEARCH: THE ALGORITHM MARKETPLACE              │
│                        How Algorithms Judge and Choose                          │
│                              Jason Barnard (2025)                               │
└─────────────────────────────────────────────────────────────────────────────────┘

        ┌───────────────────────────────────────────────────────────────────────┐
        │                         FROM ARTICLE 1 & 2                            │
        │                                                                       │
        │   Content survived DSCRI → Bot tagged 24 dimensions → Now stored     │
        └───────────────────────────────────────────────────────────────────────┘
                                        │
                                        ▼
┌─────────────────────────────────────────────────────────────────────────────────┐
│                                                                                 │
│   ╔═══════════════════════════════════════════════════════════════════════════╗ │
│   ║                           THE WEB INDEX                                   ║ │
│   ║                     (Warehouse of Annotated Chunks)                       ║ │
│   ╠═══════════════════════════════════════════════════════════════════════════╣ │
│   ║                                                                           ║ │
│   ║   ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐            ║ │
│   ║   │ Chunk A │ │ Chunk B │ │ Chunk C │ │ Chunk D │ │ Chunk E │  ...       ║ │
│   ║   │ 24 tags │ │ 24 tags │ │ 24 tags │ │ 24 tags │ │ 24 tags │            ║ │
│   ║   │ + conf  │ │ + conf  │ │ + conf  │ │ + conf  │ │ + conf  │            ║ │
│   ║   └─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘            ║ │
│   ║                                                                           ║ │
│   ║           Millions of chunks. All neutrally classified.                  ║ │
│   ║                    Waiting to be selected.                               ║ │
│   ║                                                                           ║ │
│   ╚═══════════════════════════════════════════════════════════════════════════╝ │
│                                                                                 │
└─────────────────────────────────────────────────────────────────────────────────┘
                                        │
                                        │
            ┌───────────────────────────┼───────────────────────────┐
            │                           │                           │
            ▼                           ▼                           ▼
┌─────────────────────────────────────────────────────────────────────────────────┐
│                                                                                 │
│                        THE BUYERS ENTER THE MARKETPLACE                         │
│                                                                                 │
│   ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐                │
│   │   WEB SEARCH    │  │    VERTICAL     │  │   KNOWLEDGE     │                │
│   │   ALGORITHM     │  │     SEARCH      │  │     GRAPH       │                │
│   ├─────────────────┤  ├─────────────────┤  ├─────────────────┤                │
│   │ Needs:          │  │ Needs:          │  │ Needs:          │                │
│   │ • Intent match  │  │ • Media type    │  │ • Entity conf   │                │
│   │ • Scope match   │  │ • Freshness     │  │   > 0.8         │                │
│   │ • Freshness     │  │ • Entity match  │  │ • Verifiable    │                │
│   │ • Reliability   │  │ • Geo scope     │  │ • 3rd party     │                │
│   └────────┬────────┘  └────────┬────────┘  └────────┬────────┘                │
│            │                    │                    │                         │
│   ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐                │
│   │  LLM TRAINING   │  │   AI RESPONSE   │  │                 │                │
│   │    PIPELINE     │  │   GENERATOR     │  │    YOUR ALGO    │                │
│   ├─────────────────┤  ├─────────────────┤  │    GOES HERE    │                │
│   │ Needs:          │  │ Needs:          │  │                 │                │
│   │ • Low controvrsy│  │ • Standalone    │  │  (Future buyer) │                │
│   │ • Diversity     │  │   score > 0.7   │  │                 │                │
│   │ • Sufficiency   │  │ • Quotable      │  │                 │                │
│   │ • Quality evdnc │  │ • Verifiable    │  │                 │                │
│   └────────┬────────┘  └────────┬────────┘  └─────────────────┘                │
│            │                    │                                              │
└────────────┼────────────────────┼──────────────────────────────────────────────┘
             │                    │
             └──────────┬─────────┘
                        │
                        ▼
┌─────────────────────────────────────────────────────────────────────────────────┐
│                                                                                 │
│   ╔═══════════════════════════════════════════════════════════════════════════╗ │
│   ║                    SELECTION QUERY EXECUTES                               ║ │
│   ╠═══════════════════════════════════════════════════════════════════════════╣ │
│   ║                                                                           ║ │
│   ║   FIND chunks WHERE:                                                      ║ │
│   ║     temporal_scope = 'current' OR 'evergreen'                            ║ │
│   ║     AND geographic_scope INCLUDES 'user_location'                        ║ │
│   ║     AND language = 'user_language'                                       ║ │
│   ║     AND entity_resolution_confidence > 0.8                               ║ │
│   ║     AND intent_category = 'query_intent'                                 ║ │
│   ║     AND entities CONTAINS 'target_entity'                                ║ │
│   ║     AND standalone_score > 0.7                                           ║ │
│   ║                                                                           ║ │
│   ╚═══════════════════════════════════════════════════════════════════════════╝ │
│                                                                                 │
└─────────────────────────────────────────────────────────────────────────────────┘
                                        │
                                        ▼
┌─────────────────────────────────────────────────────────────────────────────────┐
│                                                                                 │
│                            DARWINIAN COMPETITION                                │
│                                                                                 │
│   ┌─────────────────────────────────────────────────────────────────────────┐  │
│   │                     CANDIDATES THAT PASS FILTERS                        │  │
│   ├─────────────────────────────────────────────────────────────────────────┤  │
│   │                                                                         │  │
│   │   Chunk A        Chunk C        Chunk E        Chunk G        Chunk J   │  │
│   │   Score: 0.87    Score: 0.92    Score: 0.71    Score: 0.89    Score: 0.95│  │
│   │                                                                         │  │
│   └─────────────────────────────────────────────────────────────────────────┘  │
│                                        │                                       │
│                                        ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────────┐  │
│   │                      PAIRWISE COMPARISON                                │  │
│   │            "Which passage better answers the query?"                    │  │
│   ├─────────────────────────────────────────────────────────────────────────┤  │
│   │                                                                         │  │
│   │      Chunk J (0.95)  vs  Chunk C (0.92)  →  Chunk J wins               │  │
│   │      Chunk J (0.95)  vs  Chunk G (0.89)  →  Chunk J wins               │  │
│   │      Chunk C (0.92)  vs  Chunk G (0.89)  →  Chunk C wins               │  │
│   │      Chunk C (0.92)  vs  Chunk A (0.87)  →  Chunk C wins               │  │
│   │                            ...                                          │  │
│   │                                                                         │  │
│   └─────────────────────────────────────────────────────────────────────────┘  │
│                                        │                                       │
│                                        ▼                                       │
│   ┌─────────────────────────────────────────────────────────────────────────┐  │
│   │                     THE MULTIPLICATIVE EFFECT                           │  │
│   │              "Better to be a C student than 3 As and an F"              │  │
│   ├─────────────────────────────────────────────────────────────────────────┤  │
│   │                                                                         │  │
│   │   Your content:     0.9 × 0.9 × 0.9 × 0.1 = 0.0729  ← ONE weak factor  │  │
│   │   Competitor:       0.7 × 0.7 × 0.7 × 0.7 = 0.2401  ← Consistent       │  │
│   │                                                                         │  │
│   │                        COMPETITOR WINS                                  │  │
│   │                                                                         │  │
│   └─────────────────────────────────────────────────────────────────────────┘  │
│                                                                                 │
└─────────────────────────────────────────────────────────────────────────────────┘
                                        │
                                        ▼
┌─────────────────────────────────────────────────────────────────────────────────┐
│                                                                                 │
│                              SELECTION OUTCOMES                                 │
│                                                                                 │
│   ╔═════════════════════════════════╗    ╔═════════════════════════════════╗   │
│   ║         SURVIVAL                ║    ║         EXTINCTION              ║   │
│   ╠═════════════════════════════════╣    ╠═════════════════════════════════╣   │
│   ║                                 ║    ║                                 ║   │
│   ║  Web Search:                    ║    ║  Didn't pass filters?           ║   │
│   ║  → Page 1 visibility            ║    ║  → Never considered             ║   │
│   ║                                 ║    ║                                 ║   │
│   ║  Knowledge Graph:               ║    ║  Low confidence scores?         ║   │
│   ║  → Facts become canonical       ║    ║  → Lost in pairwise comparison  ║   │
│   ║  → Appear in Knowledge Panels   ║    ║                                 ║   │
│   ║                                 ║    ║  One weak dimension?            ║   │
│   ║  LLM Training:                  ║    ║  → Multiplicative destruction   ║   │
│   ║  → Model learns from you        ║    ║                                 ║   │
│   ║  → Your frameworks persist      ║    ║  Not selected = Not exist       ║   │
│   ║                                 ║    ║  in AI-mediated world           ║   │
│   ║  AI Response:                   ║    ║                                 ║   │
│   ║  → CITATION (3-7 sources)       ║    ║                                 ║   │
│   ║  → Your words in the answer     ║    ║                                 ║   │
│   ║  → You exist in AI outputs      ║    ║                                 ║   │
│   ║                                 ║    ║                                 ║   │
│   ╚═════════════════════════════════╝    ╚═════════════════════════════════╝   │
│                                                                                 │
└─────────────────────────────────────────────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────────────────────┐
│                    THE EVOLUTION: SERP SLOTS → AI CITATIONS                     │
├─────────────────────────────────────┬───────────────────────────────────────────┤
│     TRADITIONAL SEARCH (2019-2024)  │      AI ASSISTIVE ENGINES (2024+)         │
├─────────────────────────────────────┼───────────────────────────────────────────┤
│  SERP features compete for slots    │  Passages compete for inclusion           │
│  Whole Page Algorithm arbitrates    │  Synthesis algorithm arbitrates           │
│  Blue links as baseline             │  Zero citation as baseline                │
│  "Bid" based on user value          │  "Selection" based on confidence          │
│  10 result slots available          │  3-7 source citations typical             │
│  Click to content                   │  Content synthesized into answer          │
│  Position matters                   │  Citation or extinction                   │
└─────────────────────────────────────┴───────────────────────────────────────────┘


┌─────────────────────────────────────────────────────────────────────────────────┐
│                      QUICK REFERENCE: SELECTION CRITERIA                        │
├───────────────────┬─────────────────────────────────┬───────────────────────────┤
│     ALGORITHM     │         PRIMARY FILTERS         │      SURVIVAL MEANS       │
├───────────────────┼─────────────────────────────────┼───────────────────────────┤
│  Web Search       │  Intent, scope, freshness,      │  Page 1 visibility        │
│                   │  reliability                    │                           │
├───────────────────┼─────────────────────────────────┼───────────────────────────┤
│  Vertical Search  │  Media type, temporal, geo,     │  SERP feature slot        │
│                   │  entities                       │                           │
├───────────────────┼─────────────────────────────────┼───────────────────────────┤
│  Knowledge Graph  │  Entity confidence, verifi-     │  Canonical facts          │
│                   │  ability, provenance            │                           │
├───────────────────┼─────────────────────────────────┼───────────────────────────┤
│  LLM Training     │  Diversity, sufficiency,        │  Model learns from you    │
│                   │  low controversy                │                           │
├───────────────────┼─────────────────────────────────┼───────────────────────────┤
│  AI Response      │  Standalone score, salience,    │  Citation in answer       │
│                   │  verifiability                  │                           │
└───────────────────┴─────────────────────────────────┴───────────────────────────┘


              THE BOT DOESN'T JUDGE. THE ALGORITHMS SELECT.
                    SURVIVAL OF THE ALGORITHMICALLY FITTEST.

Similar Posts

  • Why Google Knowledge Panels Disappear and How to Get Yours Back

    Can a Knowledge Panel Disappear? Yes. Most people believe that after successfully obtaining a Knowledge Panel, it will be there forever. It is tempting to believe that everything will happen…

  • Brand SERP Layout

    What Does a Typical Brand SERP Look Like? Generally speaking, on a well-balanced, optimised Brand SERP you can expect seven Blue Links, three Rich Elements, and a Knowledge Panel on…